
Knowledge Clip

Embedded Systems

Pthread
Problem with Shared Memory

brojz@hr.nl

mailto:brojz@hr.nl


Problem with Shared Memory
volatile int aantal = 0;

void *teller(void *par) {
for (int i = 0; i < 10000000; i++) {

aantal++;
}
return NULL;

}

//…
pthread_create(&t1, &pta, &teller, NULL);
pthread_create(&t2, &pta, &teller, NULL);
pthread_create(&t3, &pta, &teller, NULL);

What is the final 
value of aantal?

Knowledge clip pthread problem with shared memory 2

Source: pthread_shared.c

https://bitbucket.org/HR_ELEKTRO/ros01/src/master/Voorbeelden/pthread_shared.c


Problem with Shared Memory

• The operation aantal++ is not atomic (in machine code).
– For example, X10 contains the address of aantal:

LDUR X9, [X10, #0]
ADDI X9, X9, #1
STUR X9, [X10, #0]

• What is the minimal and the maximal final value of aantal? 
– Minimum = 10000000
– Maximum = 30000000

What happens when 
a task switch occurs 

at this moment?

Knowledge clip pthread problem with shared memory 3



Solution?

• There are solutions which use shared variables
(2 flags and 1 turn variable) and busy waiting.
– Dekker’s algorithm: http://en.wikipedia.org/wiki/Dekker's_algorithm
– Peterson’s algorithm: 

http://en.wikipedia.org/wiki/Peterson's_algorithm

• Busy waiting costs clock cycles!

• OSes offer solutions without busy waiting.

Knowledge clip pthread problem with shared memory 4

http://en.wikipedia.org/wiki/Dekker's_algorithm
http://en.wikipedia.org/wiki/Peterson's_algorithm


IPC Inter Process (Task) Communication

• Shared variable based
– Busy waiting

• Inefficient
• Mutual exclusion is hard (Dekker’s or Peterson’s algorithm)

– Spinlock
• Busy waiting

– Mutex
– Semaphore
– Monitor

• Mutex combined with Conditional variables
– Barrier
– Read Write Lock
– Event Groups

• Message based
– Message Queue

Knowledge clip pthread problem with shared memory 5


	Knowledge Clip
	Problem with Shared Memory
	Problem with Shared Memory
	Solution?
	IPC Inter Process (Task) Communication

